Add RWKV, H3, Hyena

This commit is contained in:
2023-08-05 17:33:32 +02:00
parent a71030547c
commit 7b15a413d4
22 changed files with 1794 additions and 0 deletions

73
models/base.py Normal file
View File

@@ -0,0 +1,73 @@
import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from typing import Any, List
import torch
from torch import nn
from .interfaces import (
ModelTrainInterface,
SequenceConfigInterface,
SequenceInterface,
)
from .base_model import BaseModel
LOGGER = logging.getLogger(__name__)
class LayerConfigInterface(ABC):
@abstractmethod
def assign_model_config_params(self, model_config):
pass
@dataclass
class OptimizerConfig:
lr: float = 1e-3
betas: List = field(default_factory=lambda: [0.9, 0.95])
weight_decay: float = 0.0
device_type: str = "cuda" # TODO is this necessary?
fused: bool = True
eps: float = 1e-6
@dataclass
class BaseSequenceModelConfig(SequenceConfigInterface):
optimizer: OptimizerConfig = field(default_factory=OptimizerConfig)
shortname: str = "" # needed to give a model a more distinctive name used in configurations etc., temporary filled by hydra or OmegaConf
class ResettableParametersModule(nn.Module, ABC):
def __init__(self, **kwargs):
super().__init__(**kwargs)
@abstractmethod
def reset_parameters(self, **kwargs):
pass
class BaseSequenceModelTrain(
BaseModel, ModelTrainInterface, SequenceInterface
):
def __init__(self, **kwargs):
super().__init__(**kwargs)
@abstractmethod
def _create_optim_groups(self, **kwargs) -> list[dict[str, Any]]:
# TODO think of a nice way to separate functionality from child classes
# TODO move this into BaseModel and make it a separate interface too
pass
def configure_optimizer(self) -> torch.optim.Optimizer:
optim_cfg = self.config.optimizer
optim_groups = self._create_optim_groups(self.config)
use_fused = optim_cfg.device_type == "cuda" and optim_cfg.fused
LOGGER.info(f"Using fused optimizer: {use_fused}")
extra_args = dict(fused=True) if use_fused else dict()
extra_args["eps"] = optim_cfg.eps
optimizer = torch.optim.AdamW(
optim_groups, lr=optim_cfg.lr, betas=optim_cfg.betas, **extra_args
)
return optimizer

165
models/base_model.py Normal file
View File

@@ -0,0 +1,165 @@
import copy
from abc import ABC, abstractmethod
from dataclasses import asdict
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Union
import torch
from torch import nn
FN_MODEL_PREFIX = "model_"
FN_MODEL_FILE_EXT = ".p"
def get_device(device: Union[torch.device, str, int]) -> torch.device:
if device == "auto":
device = "cuda"
if isinstance(device, int):
if device < 0:
device = torch.device("cpu")
else:
device = torch.device(f"cuda:{device}")
else:
device = torch.device(device)
if (
device.type == torch.device("cuda").type
and not torch.cuda.is_available()
):
LOGGER.warn(f"Device '{str(device)}' is not available! Using cpu now.")
return torch.device("cpu")
return device
class BaseModel(nn.Module, ABC):
"""BaseModel class
Takes care of easy saving and loading.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.config = None
@abstractmethod
def forward(self, *args, **kwargs):
pass
@abstractmethod
def get_loss_func(self, **kwargs):
pass
def _get_constructor_parameters(self) -> dict:
if isinstance(self.config, dict):
return self.config
return asdict(self.config)
def reset_parameters(self):
self.apply(self.get_init_fn())
def get_init_fn(self) -> Callable[[torch.Tensor], None]:
return None
@property
def num_parameters(self) -> int:
return (
torch.tensor([p.numel() for p in self.parameters()]).sum().item()
)
@property
def device(self) -> torch.device:
return next(iter(self.parameters())).device
def copy_to_cpu(self) -> "BaseModel":
"""Copy the model to CPU."""
return copy.deepcopy(self).to(torch.device("cpu"))
def get_checkpoint_data(
self, dict_key_prefix: str = "model_"
) -> Dict[str, Any]:
checkpoint_dict = {
f"{dict_key_prefix}state_dict": self.state_dict(),
f"{dict_key_prefix}data": self._get_constructor_parameters(),
f"{dict_key_prefix}name": self.__class__.__name__,
f"{dict_key_prefix}class": self.__class__,
}
return checkpoint_dict
def save(
self,
path: Union[str, Path],
model_name: str,
file_extension: Optional[str] = FN_MODEL_FILE_EXT,
dict_key_prefix: str = "model_",
) -> None:
if isinstance(path, str):
path = Path(path)
save_path = path / (model_name + file_extension)
torch.save(self.get_checkpoint_data(dict_key_prefix), save_path)
@staticmethod
def model_save_name(
idx: int, specifier: str = "epoch", num_digits: int = -1
) -> str:
"""Get a consistnet the model save name.
Args:
epoch (int): Epoch / iteration number.
specifier (str, optional): A specifier for the idx. Defaults to epoch.
num_digits (int, optional): The number of digits in the save name. Unused by default,
since this causes overrides when we have an overflow. Defaults to -1.
Returns:
str: Model save name.
"""
if num_digits == -1:
return f"{FN_MODEL_PREFIX}{specifier}_{idx}"
else:
return f"{FN_MODEL_PREFIX}{specifier}_{idx:0{num_digits}}"
@classmethod
def load(
cls,
path: Union[str, Path],
model_name: str = None,
file_extension: Optional[str] = ".p",
device: Union[torch.device, str, int] = "auto",
dict_key_prefix: str = "model_",
) -> "BaseModel":
device = get_device(device)
if isinstance(path, str):
path = Path(path)
if model_name is None:
save_path = path
else:
save_path = path / (model_name + file_extension)
checkpoint = torch.load(save_path, map_location=device)
return cls.params_from_checkpoint(
checkpoint=checkpoint, dict_key_prefix=dict_key_prefix
)
@classmethod
def params_from_checkpoint(
cls, checkpoint: Dict[str, Any], dict_key_prefix: str = "model_"
) -> "BaseModel":
if hasattr(cls, "config_class"):
from dacite import from_dict
config_cls = cls.config_class
model_cfg = from_dict(
data_class=config_cls,
data=checkpoint[f"{dict_key_prefix}data"],
)
model = cls(config=model_cfg)
else:
model = cls(**checkpoint[f"{dict_key_prefix}data"])
model.load_state_dict(checkpoint[f"{dict_key_prefix}state_dict"])
return model
# @staticmethod
# def class_and_params_from_checkpoint(checkpoint: Dict[str, Any], dict_key_prefix: str = 'model_') -> 'BaseModel':
# from . import get_model_class
# model_class = get_model_class(checkpoint[f"{dict_key_prefix}name"])
# model = model_class.params_from_checkpoint(checkpoint=checkpoint, dict_key_prefix=dict_key_prefix)
# return model

77
models/interfaces.py Normal file
View File

@@ -0,0 +1,77 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Callable, Optional, Protocol, Sequence
import torch
class ModelTrainInterface(ABC):
def configure_optimizer(self) -> Optional[torch.optim.Optimizer]:
return None
@abstractmethod
def get_loss_func(self, **kwargs) -> Callable[[Any], torch.Tensor]:
pass
class SequenceInterface(ABC):
"""This is a generic interface for a sequence.
In our case a sequence also includes its label. Therefore, the label (aka output_dim)
is also part of the sequence interface.
A sequence always has a length (=context_length).
A sequence can have one of the following flavors:
Input sequence:
- sequence of tokens (e.g. words): vocab_size must be specified
- sequence of vectors: input_dim must be specified
Output sequence:
- next token (e.g. word): `vocab_size` must be specified (e.g. Causal Language Modeling).
- (sequence of) vectors: output_dim must be specified (e.g. Forecasting)
- label: output_dim must be specified (e.g. Sequence Classification)
Examples:
- Causal Language Modeling: input_dim = None, output_dim = None, vocab_size = int
- Forecasting: input_dim = int, output_dim = int, vocab_size = None
- Sequence Classification (General Sequence): input_dim = int, output_dim = int, vocab_size = None
- Sequence Classification (Text): input_dim = None, output_dim = int, vocab_size = int
"""
@property
def input_dim(self) -> Optional[Sequence[int]]:
return None
@property
def output_dim(self) -> Optional[Sequence[int]]:
return None
@property
def vocab_size(self) -> Optional[int]:
return None
@property
@abstractmethod
def context_length(self) -> int:
pass
@dataclass
class SequenceConfigInterface:
context_length: int
# vocab_size: Optional[int] = None
input_dim: Optional[Sequence[int]] = None
output_dim: Optional[Sequence[int]] = None
class Tokenizer(Protocol):
def __call__(self, **kwargs) -> Any:
...
def __len__(self) -> int:
...
class TokenizerInterface(ABC):
@property
def tokenizer(self) -> Optional[Tokenizer]:
return None

3
models/rwkv/__init__.py Normal file
View File

@@ -0,0 +1,3 @@
from .rwkv_model import RWKV, RWKVConfig
__all__ = ["RWKV", "RWKVConfig"]

View File

@@ -0,0 +1,145 @@
#include <stdio.h>
#include <assert.h>
#define MIN_VALUE (-1e38)
template <typename F>
__global__ void kernel_forward(const int B, // batch size
const int T, // sequence length
const int C, // dim_att (number of channels)
const F *__restrict__ const _w_timedecay, // -exp(time decay) [attention_dim]
const F *__restrict__ const _u_timefirst, // time first [attention_dim]
const F *__restrict__ const _k, // keys [batch_size, sequence_length, embedding_dim]
const F *__restrict__ const _v, // values [batch_size, sequence_length, embedding_dim]
F *__restrict__ const _y // output [batch_size, sequence_length, embedding_dim]
) {
// - this block of code defines the area in the batch tensors that this thread will work on
const int idx = blockIdx.x * blockDim.x + threadIdx.x; // this idx is for the whole batch
const int _b = idx / C; // this idx is for the batch
const int _c = idx % C; // this idx is for the channel
const int _offset = _b * T * C + _c; // this idx is for the whole batch
// -
// these are vectors of size C (channel dimension) element in embedding_dim
F u_timefirst = _u_timefirst[_c];
F w_timedecay = _w_timedecay[_c];
// these are tensors of size B x T x C (stored as array, access through pointers)
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
F aa = 0, bb = 0, pp = MIN_VALUE;
// loop goes over time dimension
for (int i = 0; i < T; i++) {
const int ii = i * C; // index ii picks the correct channel
const F kk = k[ii];
const F vv = v[ii];
F ww = u_timefirst + kk; //
F p = max(pp, ww);
F e1 = exp(pp - p); // exp(pp - p) is the same as exp(pp) / exp(p)
F e2 = exp(ww - p);
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
ww = w_timedecay + pp; //
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C,
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
const F *__restrict__ const _y, const F *__restrict__ const _gy,
F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk, F *__restrict__ const _gv) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
const F *__restrict__ const y = _y + _offset;
const F *__restrict__ const gy = _gy + _offset;
F *__restrict__ const gk = _gk + _offset;
F *__restrict__ const gv = _gv + _offset;
F q[Tmax], r[Tmax];
F gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
const F qq = gy[ii] / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = gw * _w[_c]; // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = gu;
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
const F qq = q[i];
const F rr = r[i];
F e1 = qq * exp(rr);
F e2 = exp(kk + pp);
gk[ii] = e1 * (vv - yy) + e2 * (aa * vv + bb);
gv[ii] = e1 + e2 * aa;
const F ww = w + pp;
const F www = rr - u - kk;
const F p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}

View File

@@ -0,0 +1,132 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#define MIN_VALUE (-1e38)
typedef at::BFloat16 bf16;
__global__ void kernel_forward(const int B, const int T, const int C,
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
bf16 *__restrict__ const _y) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
bf16 *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
float aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
__global__ void kernel_backward(const int B, const int T, const int C,
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
const bf16 *__restrict__ const _y, const bf16 *__restrict__ const _gy,
bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu, bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
const bf16 *__restrict__ const y = _y + _offset;
const bf16 *__restrict__ const gy = _gy + _offset;
bf16 *__restrict__ const gk = _gk + _offset;
bf16 *__restrict__ const gv = _gv + _offset;
float q[Tmax], r[Tmax];
float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
const float yy = float(y[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
const float qq = float(gy[ii]) / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = bf16(gu);
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
const float yy = float(y[ii]);
const float qq = q[i];
const float rr = r[i];
float e1 = qq * exp(rr);
float e2 = exp(kk + pp);
gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
gv[ii] = bf16(e1 + e2 * aa);
const float ww = w + pp;
const float www = rr - u - kk;
const float p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}

View File

@@ -0,0 +1,25 @@
#include <torch/extension.h>
// #include <c10/cuda/CUDAGuard.h>
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y);
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv);
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
// TODO add this line const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
// (see https://discord.com/channels/992359628979568762/1084547464452907088/1091680712178016326)
// see https://github.com/BlinkDL/ChatRWKV/blob/main/rwkv_pip_package/src/rwkv/cuda/wrapper.cpp
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>());
}
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), gy.data_ptr<float>(), gw.data_ptr<float>(), gu.data_ptr<float>(), gk.data_ptr<float>(), gv.data_ptr<float>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv forward");
m.def("backward", &backward, "wkv backward");
}
TORCH_LIBRARY(wkv, m) {
m.def("forward", forward);
m.def("backward", backward);
}

View File

@@ -0,0 +1,25 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y);
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv);
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(),
gy.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv forward");
m.def("backward", &backward, "wkv backward");
}
TORCH_LIBRARY(wkv, m) {
m.def("forward", forward);
m.def("backward", backward);
}

469
models/rwkv/rwkv_model.py Normal file
View File

@@ -0,0 +1,469 @@
import logging
import math
from dataclasses import dataclass, field
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..base import (
BaseSequenceModelConfig,
BaseSequenceModelTrain,
ResettableParametersModule,
)
from .wkv_kernel import WKV, WKVConfig, WKVTorch
LOGGER = logging.getLogger(__name__)
class L2Wrap(torch.autograd.Function):
"""L2 regularization for the logits."""
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
def _get_activation_fn(activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
elif activation == "silu":
return F.silu
elif activation == "relu_squared":
return lambda x: torch.square(torch.relu(x))
elif activation == "selu":
return F.selu
elif activation == "elu":
return F.elu
else:
raise ValueError(f"Unknown activation function {activation}")
@dataclass
class RWKVConfig(BaseSequenceModelConfig):
embedding_dim: int = 640
ffn_dim: int = 2048
num_layers: int = 12
attention_dim: int = -1
wkv_config: Optional[Union[WKVConfig, Dict]] = field(
default_factory=lambda: WKVConfig()
)
l2_logit_reg: bool = False
use_timemix_timemix: bool = True
use_timemix_channelmix: bool = True
channelmix_act_fn: str = "relu_squared"
init: str = "reproduce_init" # options "paper_init", "reproduce_init" (reproduce init is different from paper init)
# the reproduce_init was figured out when only the code was available, not the paper
# the init as it is described in the paper slightly differs from the reproduce_init
# the reproduce_init actually performs much better than the paper_init (ca. 0.5 better in train loss after 300 steps on WikiText-103)
# so we use this as default. reproduce_init is also (likely to be) used in the original code.
def __post_init__(self):
# TODO: Check if this was actually needed
if self.wkv_config is not None:
self.wkv_config.T_max = max(
self.wkv_config.T_max, self.context_length
)
if self.attention_dim <= 0:
self.attention_dim = self.embedding_dim
class RWKV(BaseSequenceModelTrain):
config_class = RWKVConfig
def __init__(self, config: RWKVConfig, **kwargs):
super().__init__()
self.config = config
self.cfg = config
# self.embedding = nn.Embedding(
# num_embeddings=self.cfg.vocab_size,
# embedding_dim=self.cfg.embedding_dim,
# )
self.blocks = nn.ModuleList(
[
RWKVBlock(config=self.cfg, block_idx=i)
for i in range(self.cfg.num_layers)
]
)
if self.cfg.wkv_config is not None:
LOGGER.info("Using WKV cuda kernel.")
else:
LOGGER.info("Using WKV torch kernel.")
# self.ln_out = nn.LayerNorm(self.cfg.embedding_dim)
# self.head = nn.Linear(
# self.cfg.embedding_dim, self.cfg.vocab_size, bias=False
# )
self.reset_parameters()
@property
def context_length(self) -> int:
return self.config.context_length
# @property
# def vocab_size(self) -> int:
# return self.config.vocab_size
def reset_parameters(self) -> None:
# init embedding
# default init is zero # TODO try this
# we use a narrow uniform init, in the original code they use the initial learning rate
# we just set it to a small value
# emb_init_range = 0.0008 # 1e-3
# nn.init.uniform_(
# self.embedding.weight, a=-emb_init_range, b=emb_init_range
# )
# init blocks
for b in self.blocks:
b.reset_parameters()
# init head and layer norm
# self.head.reset_parameters()
# self.ln_out.reset_parameters()
def _create_optim_groups(self, config: RWKVConfig):
optim_groups = [
{"params": [p for p in self.parameters()], "weight_decay": 0.0}
]
return optim_groups
def forward(self, x):
# no embedding
# # input shape: (B, T), T <= context_len, T are token ids
# B, T = x.size()
# assert T <= self.cfg.context_length, (
# f"input sequence length {T} exceeds model "
# f"context length {self.cfg.context_length}"
# )
# x = self.embedding(x) # (B, T, C), C = embedding_dim
for i, block in enumerate(self.blocks):
x = block(x)
# x = self.ln_out(x)
# no head
# x = self.head(x)
return x
def get_loss_func(self):
def loss_fn(y_hat, y):
loss = F.cross_entropy(
y_hat.view(-1, y_hat.size(-1)), y.view(-1), ignore_index=-1
)
if self.cfg.l2_logit_reg:
loss = L2Wrap.apply(loss, y_hat)
return loss
return loss_fn
def _calc_gain(weight: torch.Tensor) -> float:
"""Calculate the gain value of the given weight tensor."""
gain = 1.0
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(weight)
if fan_out > fan_in:
gain = math.sqrt(fan_out / fan_in)
return gain
class RWKVBlock(ResettableParametersModule):
def __init__(self, config: RWKVConfig, block_idx: int):
super().__init__()
self.config = config
self.block_idx = block_idx
self.ln0 = None
if self.block_idx == 0:
self.ln0 = nn.LayerNorm(self.config.embedding_dim)
# TODO 1) maybe additional positional embedding here (only in block 0)
self.ln1 = nn.LayerNorm(self.config.embedding_dim)
self.ln2 = nn.LayerNorm(self.config.embedding_dim)
# TODO 2) maybe pre feedforward here (channel mix) see line 325f in RWKV-v4neo/model.py
self.attention_timemix = RWKVTimeMix(
config=self.config, block_id=self.block_idx
)
self.ffn_channelmix = RWKVChannelMix(
config=self.config, block_id=self.block_idx
)
def reset_parameters(self) -> None:
if self.ln0 is not None:
self.ln0.reset_parameters()
self.ln1.reset_parameters()
self.ln2.reset_parameters()
self.attention_timemix.reset_parameters()
self.ffn_channelmix.reset_parameters()
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.block_idx == 0 and self.ln0 is not None:
x = self.ln0(x)
# TODO 1) maybe positional embedding here (only in block 0)
# x = x+pos_emb
# TODO 2) maybe pre feedforward here (channel mix) see line 325f in RWKV-v4neo/model.py
# residual connection 1
x = x + self.attention_timemix(self.ln1(x))
# residual connection 2
x = x + self.ffn_channelmix(self.ln2(x))
return x
class RWKVTimeMix(ResettableParametersModule):
def __init__(self, config: RWKVConfig, block_id: int):
super().__init__()
self.config = config
self.block_id = block_id
embedding_dim = self.config.embedding_dim
attention_dim = self.config.attention_dim
# init time mix constants
req_grad = True # TODO make this configurable
self.time_mix_k = nn.Parameter(
torch.empty((1, 1, embedding_dim)), requires_grad=req_grad
)
self.time_mix_v = nn.Parameter(
torch.empty((1, 1, embedding_dim)), requires_grad=req_grad
)
self.time_mix_r = nn.Parameter(
torch.empty((1, 1, embedding_dim)), requires_grad=req_grad
)
# init time decay
self.time_decay = nn.Parameter(
torch.empty((attention_dim,)), requires_grad=req_grad
)
self.time_first = nn.Parameter(
torch.empty((attention_dim,)), requires_grad=req_grad
)
# init layers / parameters
# this shifts the time dimension by 1 forward, pad 0 at first time step, remove last time step:
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.key = nn.Linear(embedding_dim, attention_dim, bias=False)
self.value = nn.Linear(embedding_dim, attention_dim, bias=False)
self.receptance = nn.Linear(embedding_dim, attention_dim, bias=False)
self.output = nn.Linear(attention_dim, embedding_dim, bias=False)
if self.config.wkv_config is not None:
# use CUDA implementation
self.wkv = WKV(config=self.config.wkv_config)
else:
# use pure PyTorch implementation
self.wkv = WKVTorch()
self.reset_parameters()
def reset_parameters(self) -> None:
# init time mix constants
time_mix_k, time_mix_v, time_mix_r = self._init_time_mix_constants()
req_grad = True
self.time_mix_k = nn.Parameter(time_mix_k, requires_grad=req_grad)
self.time_mix_v = nn.Parameter(time_mix_v, requires_grad=req_grad)
self.time_mix_r = nn.Parameter(time_mix_r, requires_grad=req_grad)
# init time decay
time_decay, time_first = self._init_time_decay_constants()
self.time_decay = nn.Parameter(time_decay, requires_grad=req_grad)
self.time_first = nn.Parameter(time_first, requires_grad=req_grad)
# init layers / parameters
if self.config.init == "paper_init":
# ZERO INIT
nn.init.zeros_(self.receptance.weight)
nn.init.zeros_(self.key.weight)
nn.init.zeros_(self.value.weight)
# NORMAL INIT
nn.init.normal_(
self.output.weight,
std=math.sqrt(self.config.ffn_dim / self.config.embedding_dim),
)
elif self.config.init == "reproduce_init":
# ZERO INIT
nn.init.zeros_(self.key.weight)
nn.init.zeros_(self.receptance.weight)
nn.init.zeros_(self.output.weight)
# ORTHOGONAL INIT
nn.init.orthogonal_(
self.value.weight, gain=_calc_gain(self.value.weight)
)
else:
raise ValueError(f"Unknown init method {self.config.init}")
def _compute_rkv(self, x):
if self.config.use_timemix_timemix:
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
else:
xk = x
xv = x
xr = x
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
sr = torch.sigmoid(r)
return sr, k, v
def forward(self, x):
B, T, C = x.size() # x = (batch_size, seq_len, embedding_dim)
attention_dim = self.config.attention_dim
sr, k, v = self._compute_rkv(
x
) # sr, k, v = (batch_size, seq_len, attention_dim)
# wkv cuda/torch kernel
rwkv = sr * self.wkv(
B, T, attention_dim, self.time_decay, self.time_first, k, v
)
return self.output(rwkv)
def _init_time_mix_constants(
self,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
num_blocks = self.config.num_layers
embedding_dim = self.config.embedding_dim
ratio_0_to_1 = self.block_id / max(1, num_blocks - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (self.block_id / num_blocks) # 1 to ~0
# TODO does this make sense?
# different time mix constants for each block and each embedding dim
embed_dim_val = torch.ones(1, 1, embedding_dim)
for i in range(embedding_dim):
embed_dim_val[0, 0, i] = i / embedding_dim
# TODO check constants 0.3 and 0.5
time_mix_k = torch.pow(embed_dim_val, ratio_1_to_almost0)
time_mix_v = (
torch.pow(embed_dim_val, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
time_mix_r = torch.pow(embed_dim_val, 0.5 * ratio_1_to_almost0)
return time_mix_k, time_mix_v, time_mix_r
def _init_time_decay_constants(self) -> Tuple[torch.Tensor, torch.Tensor]:
num_blocks = self.config.num_layers
attention_dim = self.config.attention_dim
ratio_0_to_1 = self.block_id / max(1, num_blocks - 1) # 0 to 1
# time decay
# this encourages the model to decay the information in different memory cells (channel dimensions)
# at different speeds
decay_speed = torch.ones(attention_dim)
for h in range(attention_dim):
decay_speed[h] = -5 + 8 * (h / (attention_dim - 1)) ** (
0.7 + 1.3 * ratio_0_to_1
)
time_decay = decay_speed
# time first
# The alternating zigzag pattern initially creates subtle variations in the tensor elements,
# which are intended to help the model treat different dimensions of the embedding differently
zigzag = (
torch.tensor([(i + 1) % 3 - 1 for i in range(attention_dim)]) * 0.5
)
time_first = (
torch.ones(attention_dim) * torch.log(torch.tensor(0.3)) + zigzag
)
return time_decay, time_first
class RWKVChannelMix(ResettableParametersModule):
def __init__(self, config: RWKVConfig, block_id: int):
super().__init__()
self.config = config
self.block_id = block_id
self._act_fn = _get_activation_fn(self.config.channelmix_act_fn)
embedding_dim = self.config.embedding_dim
ffn_dim = self.config.ffn_dim
# init time mix constants
req_grad = True
self.time_mix_k = nn.Parameter(
torch.empty((1, 1, embedding_dim)), requires_grad=req_grad
)
self.time_mix_r = nn.Parameter(
torch.empty((1, 1, embedding_dim)), requires_grad=req_grad
)
# init layers / parameters
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.key = nn.Linear(embedding_dim, ffn_dim, bias=False)
self.receptance = nn.Linear(embedding_dim, embedding_dim, bias=False)
self.value = nn.Linear(ffn_dim, embedding_dim, bias=False)
self.reset_parameters()
def reset_parameters(self):
# init time mix constants
time_mix_k, time_mix_r = self._init_time_mix_constants()
req_grad = True
self.time_mix_k = nn.Parameter(time_mix_k, requires_grad=req_grad)
self.time_mix_r = nn.Parameter(time_mix_r, requires_grad=req_grad)
# init layers / parameters
if self.config.init == "paper_init":
# ZERO INIT
nn.init.zeros_(self.receptance.weight)
nn.init.zeros_(self.key.weight)
# NORMAL INIT
nn.init.normal_(
self.value.weight,
std=math.sqrt(self.config.ffn_dim / self.config.embedding_dim),
)
elif self.config.init == "reproduce_init":
# ZERO INIT
nn.init.zeros_(self.receptance.weight)
nn.init.zeros_(self.value.weight)
# ORTHOGONAL INIT
nn.init.orthogonal_(
self.key.weight, gain=_calc_gain(self.key.weight)
)
else:
raise ValueError(f"Unknown init method {self.config.init}")
def _init_time_mix_constants(self) -> Tuple[torch.Tensor, torch.Tensor]:
num_blocks = self.config.num_layers
embedding_dim = self.config.embedding_dim
ratio_1_to_almost0 = 1.0 - (self.block_id / num_blocks) # 1 to ~0
embed_dim_val = torch.ones(1, 1, embedding_dim)
for i in range(embedding_dim):
embed_dim_val[0, 0, i] = i / embedding_dim
time_mix_k = torch.pow(embed_dim_val, ratio_1_to_almost0)
time_mix_r = torch.pow(embed_dim_val, ratio_1_to_almost0)
return time_mix_k, time_mix_r
def forward(self, x):
if self.config.use_timemix_channelmix:
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
else:
xk = x
xr = x
k = self.key(xk)
k = self._act_fn(k)
kv = self.value(k)
y = torch.sigmoid(self.receptance(xr)) * kv
return y

View File

@@ -0,0 +1,92 @@
import logging
from dataclasses import dataclass
from typing import Callable, Sequence
import torch
from torch import nn
from ...ml_utils.config import NameAndKwargs
from ..base import BaseSequenceModelTrain
from ..seq_enc_dec import create_decoder, create_encoder
from .rwkv_model import RWKVBlock, RWKVConfig
LOGGER = logging.getLogger(__name__)
@dataclass
class SequenceRWKVConfig(RWKVConfig):
encoder: NameAndKwargs = None
decoder: NameAndKwargs = None
class SequenceRWKV(BaseSequenceModelTrain):
config_class = SequenceRWKVConfig
def __init__(self, config: SequenceRWKVConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
if config.wkv_config is not None:
LOGGER.info("Using WKV cuda kernel.")
else:
LOGGER.info("Using WKV torch kernel.")
self.encoder = create_encoder(config=config)
self.decoder = create_decoder(config=config)
self.blocks = nn.ModuleList([RWKVBlock(config, block_idx=i) for i in range(config.num_layers)])
self.blocks_ln = nn.LayerNorm(config.embedding_dim)
self.reset_parameters()
@property
def context_length(self) -> int:
return self.config.context_length
@property
def vocab_size(self) -> int:
return self.config.vocab_size
@property
def input_dim(self) -> Sequence[int]:
return self.config.input_dim
@property
def output_dim(self) -> Sequence[int]:
return self.config.output_dim
def reset_parameters(self):
for block in self.blocks:
block.reset_parameters()
self.blocks_ln.reset_parameters()
self.encoder.reset_parameters()
self.decoder.reset_parameters()
def _create_optim_groups(self, config: RWKVConfig):
optim_groups = [{"params": [p for p in self.parameters()], "weight_decay": 0.0}]
return optim_groups
def get_loss_func(self) -> Callable[[torch.Tensor, torch.Tensor], torch.Tensor]:
import torch.nn.functional as F
def loss_fn(logits, targets):
assert not torch.any(torch.isnan(logits.view(-1)))
assert not torch.any(torch.isnan(targets.view(-1)))
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return loss
return loss_fn
def forward(self, x: torch.Tensor) -> torch.Tensor:
assert (
x.size(1) <= self.config.context_length
), f"Forward input sequence length {x.size(1)} is longer than context length {self.config.context_length}"
y = self.encoder(x)
for block in self.blocks:
y = block(y)
y = self.blocks_ln(y)
y = self.decoder(y)
return y

259
models/rwkv/wkv_kernel.py Normal file
View File

@@ -0,0 +1,259 @@
import os
from dataclasses import dataclass, field
from pathlib import Path
from typing import List, Union
import torch
from einops import rearrange, repeat
from torch import nn
from torch.utils.cpp_extension import load
"""This module is a wrapper for the C++/CUDA implementation of the WKV kernel.
"""
@dataclass
class WKVConfig:
T_max: int = 1024 # max sequence length within cuda operations
cpp_ext_name: str = "wkv"
device: Union[str, torch.device] = "cuda"
float_mode: str = "fp32" # options: fp32, fp16, bfloat16
def __post_init__(self):
self.device = torch.device(self.device)
def float_mode_to_dtype(self):
if self.float_mode == "fp32" or "32" in str(self.float_mode):
return torch.float32
elif self.float_mode == "fp16" or "16" in str(self.float_mode):
return torch.float16
elif self.float_mode == "bfloat16":
return torch.bfloat16
else:
raise ValueError(f"Unknown float_mode: {self.float_mode}")
class WKV(nn.Module):
_instance = None # for singleton
class _WKV(torch.autograd.Function):
wkv_cuda = None
wkv_config: WKVConfig = None
@classmethod
def forward(
cls,
ctx,
batch_size,
seq_len,
embedding_dim,
time_decay, # TODO replace embedding_dim with attention_dim
time_first,
k,
v,
):
wkv_cuda = cls.wkv_cuda
wkv_config = cls.wkv_config
# setup context # TODO for PyTorch 2.0 use extra setup_context() function
ctx.batch_size = batch_size
ctx.seq_len = seq_len
ctx.embedding_dim = embedding_dim
ctx.wkv_cuda = wkv_cuda
ctx.wkv_config = wkv_config
assert (
seq_len <= wkv_config.T_max
), f"Sequence length {seq_len} exceeds the maximum allowed T_max={wkv_config.T_max}"
# TODO what does this assert do? Why necessary?
assert (
batch_size * embedding_dim % min(embedding_dim, wkv_config.T_max) == 0
), "batch_size * embedding_dim must be divisible by min(embedding_dim, T_max)"
#
dtype = torch.float32 # convert all tensors to float32 (for cuda kernel)
device = wkv_config.device
# convert input tensors
time_decay = time_decay.to(dtype=dtype, device=device, memory_format=torch.contiguous_format)
time_first = time_first.to(dtype=dtype, device=device, memory_format=torch.contiguous_format)
k = k.to(dtype=dtype, device=device, memory_format=torch.contiguous_format)
v = v.to(dtype=dtype, device=device, memory_format=torch.contiguous_format)
# allocate output tensor
y = torch.empty(
batch_size, seq_len, embedding_dim, dtype=dtype, device=device, memory_format=torch.contiguous_format
)
# call cuda kernel
time_decay = -torch.exp(time_decay) # TODO why is this necessary?
wkv_cuda.forward(batch_size, seq_len, embedding_dim, time_decay, time_first, k, v, y)
ctx.save_for_backward(time_decay, time_first, k, v, y)
# convert output tensor to correct dtype
y = y.to(dtype=wkv_config.float_mode_to_dtype())
return y
@staticmethod
def backward(ctx, gy):
batch_size = ctx.batch_size
seq_len = ctx.seq_len
embedding_dim = ctx.embedding_dim
assert (
seq_len <= ctx.wkv_config.T_max
), f"Sequence length {seq_len} exceeds the maximum allowed T_max={ctx.wkv_config.T_max}"
assert (
batch_size * embedding_dim % min(embedding_dim, ctx.wkv_config.T_max) == 0
), "batch_size * embedding_dim must be divisible by min(embedding_dim, T_max)"
time_decay, time_first, k, v, y = ctx.saved_tensors
device = ctx.wkv_config.device
# allocate gradient tensors
gtime_decay = torch.zeros((batch_size, embedding_dim), device=device, dtype=torch.float32).contiguous()
gtime_first = torch.zeros((batch_size, embedding_dim), device=device, dtype=torch.float32).contiguous()
gk = torch.zeros((batch_size, seq_len, embedding_dim), device=device, dtype=torch.float32).contiguous()
gv = torch.zeros((batch_size, seq_len, embedding_dim), device=device, dtype=torch.float32).contiguous()
# call cuda kernel
gy = gy.to(dtype=torch.float32, memory_format=torch.contiguous_format)
# arg0: int, arg1: int, arg2: int, arg3: at::Tensor, arg4: at::Tensor, arg5: at::Tensor, arg6: at::Tensor,
# arg7: at::Tensor, arg8: at::Tensor, arg9: at::Tensor, arg10: at::Tensor, arg11: at::Tensor, arg12: at::Tensor
ctx.wkv_cuda.backward(
batch_size,
seq_len,
embedding_dim,
time_decay,
time_first,
k,
v,
y,
gy,
gtime_decay,
gtime_first,
gk,
gv,
)
gtime_decay = gtime_decay.sum(dim=0)
gtime_first = gtime_first.sum(dim=0)
# convert gradient tensors to correct dtype
out_dtype = ctx.wkv_config.float_mode_to_dtype()
return (
None,
None,
None,
gtime_decay.to(dtype=out_dtype),
gtime_first.to(dtype=out_dtype),
gk.to(dtype=out_dtype),
gv.to(dtype=out_dtype),
)
def __new__(cls, config: WKVConfig = WKVConfig()):
if cls._instance is None:
cls._instance = super(WKV, cls).__new__(cls)
cls._instance._setup(config)
return cls._instance
def __init__(self, *args, **kwargs):
# Dummy to avoid multiple calls to self._load_cuda()
pass
def _setup(self, config: WKVConfig = WKVConfig()):
"""Setup the WKV module. This is called by __new__ as constructor."""
super().__init__()
self.cfg = config
self.wkv_cuda = self._load_cuda()
self.device = self.cfg.device
def _load_cuda(self):
cfg = self.cfg
os.environ["CUDA_LIB"] = os.path.join(
os.path.split(torch.utils.cpp_extension.include_paths(cuda=True)[-1])[0], "lib"
)
print(os.environ.get("LD_LIBRARY_PATH", ""))
print(os.environ["CUDA_LIB"])
cpp_ext_sources_float32: List[str] = [
str(Path(__file__).parent / "cuda/wkv_op.cpp"),
str(Path(__file__).parent / "cuda/wkv_cuda.cu"),
]
cpp_ext_sources_bfloat16: List[str] = [
str(Path(__file__).parent / "cuda/wkv_op_bf16.cpp"),
str(Path(__file__).parent / "cuda/wkv_cuda_bf16.cu"),
]
if cfg.float_mode_to_dtype() == torch.float32:
cpp_ext_sources = cpp_ext_sources_float32
elif cfg.float_mode_to_dtype() == torch.bfloat16:
cpp_ext_sources = cpp_ext_sources_bfloat16
else:
raise ValueError(f"Unsupported float mode {cfg.float_mode}")
myargs = {
"verbose": True,
"with_cuda": True,
"extra_ldflags": [f"-L{os.environ['CUDA_LIB']}", "-lcublas"],
"extra_cuda_cflags": [
# "-gencode",
# "arch=compute_70,code=compute_70",
"-gencode",
"arch=compute_80,code=compute_80",
"-res-usage",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-DTmax={cfg.T_max}",
],
}
cuda_module = load(name=cfg.cpp_ext_name, sources=cpp_ext_sources, **myargs)
return cuda_module
def to(self, **kwargs):
device = kwargs.get("device", None)
if device is not None:
self.device = self.cfg.device = torch.device(device)
return super().to(**kwargs)
def forward(self, batch_size, seq_len, embeding_dim, time_decay, time_first, k, v):
self.device = self.cfg.device = v.device
assert self.device != torch.device("cpu"), "WKV is not implemented for CPU"
self._WKV.wkv_cuda = self.wkv_cuda
self._WKV.wkv_config = self.cfg
return self._WKV.apply(batch_size, seq_len, embeding_dim, time_decay, time_first, k, v)
class WKVTorch(nn.Module):
def __init__(self):
super().__init__()
# did not add time_decay = -torch.exp(time_decay) here, it is not necessary
# this is done in the forward function of WKV cuda kernel
# if it is added here, the outputs will be different from the cuda kernel
def forward(self, batch_size, seq_len, embedding_dim, time_decay, time_first, k, v):
dtype = k.dtype
device = k.device
y = torch.zeros(batch_size, seq_len, embedding_dim, dtype=dtype, device=device)
MIN_VAL = 0.0 # -1e38
# reshape inputs
k_ = torch.permute(k, (1, 0, 2)) # rearrange(k, 'b s e -> s b e')
v_ = torch.permute(v, (1, 0, 2)) # rearrange(v, 'b s e -> s b e')
y_ = torch.permute(y, (1, 0, 2)) # rearrange(y, 'b s e -> s b e')
tf = time_first.repeat(batch_size, 1) # repeat(time_first, 'e -> b e', b=batch_size)
td = time_decay.repeat(batch_size, 1) # repeat(time_decay, 'e -> b e', b=batch_size)
# running sums
aa = torch.zeros(batch_size, embedding_dim, dtype=dtype, device=device)
bb = torch.zeros(batch_size, embedding_dim, dtype=dtype, device=device)
eps = torch.full((batch_size, embedding_dim), MIN_VAL, dtype=dtype, device=device)
for t in range(seq_len):
e_tf_k = torch.exp(tf + k_[t] - eps)
y_[t] = (aa + v_[t] * e_tf_k) / (bb + e_tf_k)
eps_next = torch.max(td + eps, k_[t])
e_td_k = torch.exp(td + eps - eps_next)
e_k = torch.exp(k_[t] - eps_next)
aa = aa * e_td_k + v_[t] * e_k
bb = bb * e_td_k + e_k
eps = eps_next
y = rearrange(y_, "s b e -> b s e")
return y